Važnije osobine kruga | seminarski diplomski
Ovo je pregled DELA TEKSTA rada na temu "Važnije osobine kruga". Rad ima 22 strana. Ovde je prikazano oko 500 reči izdvojenih iz rada.
Napomena: Rad koji dobjate na e-mail ne izgleda ovako, ovo je samo DEO TEKSTA izvučen iz rada, da bi se video stil pisanja. Radovi koje dobijate na e-mail su uređeni (formatirani) po svim standardima. U tekstu ispod su namerno izostavljeni pojedini segmenti.
Uputstvo o načinu preuzimanja rada možete pročitati OVDE.
Matematički fakultet, Beograd
Seminarski rad iz predmeta
Metodika nastave matematike 2
Tema:
Važnije osobine kruga
Zoran Lučić Zahir Gudžević
411/06.
Uvod
Ovaj tekst, iako je seminarski rad, ima za cilj da sažeto predstavi najvažnije pojmove i osobine vezane za krug. Ovaj tekst je pisan pre svega za čitaoce koji su već usvojili pojam kruga i veći deo njegovih osobina, sa namerom da im ovaj tekst bude podsetnik na sve važnije osobine kruga. Pored toga, u ovom tekstu su navedeni i pojmovi kao što su osnosimetrično preslikavanje, pramen konkurentnih pravih, polarne koordinate i dr. Tako da čitalac može da se podseti i nekih bazičnih pojmova iz kojih su izvedene osobine kruga, u cilju lakčeg razumevanja teksta.
Naravno, tekst počinje definicijama kruga koje se najčešće pojavljuju u toku školovanja. Pokazaćemo da sve te definicje predstavljaju isti pojam kruga., i usvojićemo jednu od njih (najjednostavniju) i uglavnom na osnovu nje ćemo zasnivati dalji tekst, ukoliko nije drugačije naglašeno. U daljem tekstu su istaknuti osnovni pojmovi vezani za krug, kao što su: prečnik, tetiva, kružni luk i dr.
Takođe, navešćemo neke bitine, najčešće korišćene teoreme, koje bi trebalo da budu od koristi za savladavanje osnovnih osobina kruga, kao što je osobina da istim centrom i poluprečnikom zadajemo isti krug i sl. Ove teoreme možemo koristiti i u zadacima u kojima se zahteva konstrukcija kruga sa određenim osobinama. Napomenuću, da su kostrukcije kruga opisanog oko trougla i upisanog u trougao, kao i konstrukcije krugova opisanih i upisanih u pravilne mnogouglove, namerno izostavljene iz ovog tekste, jer bi tekst prevazišao svoj cilj, a to je kratak pregled osnovnih osobina kruga. Naravno, iz osobina navedenih u ovom tekstu može se zaključiti kako se konstruišu gore pomenuti opisani i upisani krugovi.
U tekstu se između ostalog izdvajaju i pojmovi potencije, radikalne ose i inverzije u odnosu na krug kao pojmovi koji mogu biti od velike koristi pri konstrukciji krugova, pravih i tačaka, koji su u međusobno specifičnom položaju. Osobine tih pojmova kao i način konstrukcije dati su teoremama. Naravno, ovde su predočeni i načini najčešće korišćenih konstrukcija, kao što je konstrukcija tangete na krug iz date tačke.
Kao što rekoh na početku sve su to osnovni pojmovi i konstrukcije i njihovo navođenje u ovom tekstu i ima za cilj brzo podsećanje čitaoca na osnovne osobine kruga.
Posto je često potrebno u izračunavati obim i površinu kruga, u ovom tekstu je i to navedeno, gde je osim formula, ukratko opisan i nacin na koji je Arhimed došao do formula površine i obima kruga.
Kako živimo u eri računaru, navedene su formule za predstavljanje kruga koordinatama, pomoću kojih krug možemo opisati na računarskom jeziku i sa njime, preko tih koordinata, efektivno raditi u računarskom programiranju. U tom, cilju uvedene su prvo polarne koordinate i način predstavljanja kruga u polarnim koordinatama, a zatim iz njih izveden način predstavljanja kruga u Dekartovim koordinatama. U ovom delu sa koordinatama, date su i formule za izračunavanje površina kružnog isečka i odsečka, kao i formule za izračunavanje dužine kružnog luka. Ovde nećemo obrađivati način izvođenja tih formula, jer se one na osnovu prethodnih osobina i definicija pojmova vezanih za krug mogu lako izvesti, a opet kazem, ovde je cilj samo kratak pregled osobina kruga.
...
CEO RAD MOŽETE PREUZETI NA SAJTU: WWW.MATURSKIRADOVI.NET